Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Commun ; 14(1): 2329, 2023 04 22.
Article in English | MEDLINE | ID: covidwho-2302201

ABSTRACT

Rhinoviruses and allergens, such as house dust mite are major agents responsible for asthma exacerbations. The influence of pre-existing airway inflammation on the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely unknown. We analyse mechanisms of response to viral infection in experimental in vivo rhinovirus infection in healthy controls and patients with asthma, and in in vitro experiments with house dust mite, rhinovirus and SARS-CoV-2 in human primary airway epithelium. Here, we show that rhinovirus infection in patients with asthma leads to an excessive RIG-I inflammasome activation, which diminishes its accessibility for type I/III interferon responses, leading to their early functional impairment, delayed resolution, prolonged viral clearance and unresolved inflammation in vitro and in vivo. Pre-exposure to house dust mite augments this phenomenon by inflammasome priming and auxiliary inhibition of early type I/III interferon responses. Prior infection with rhinovirus followed by SARS-CoV-2 infection augments RIG-I inflammasome activation and epithelial inflammation. Timely inhibition of the epithelial RIG-I inflammasome may lead to more efficient viral clearance and lower the burden of rhinovirus and SARS-CoV-2 infections.


Subject(s)
Antiviral Restriction Factors , Asthma , COVID-19 , DEAD Box Protein 58 , Inflammasomes , Rhinovirus , Humans , Antiviral Restriction Factors/genetics , Antiviral Restriction Factors/metabolism , Asthma/genetics , Asthma/immunology , COVID-19/genetics , COVID-19/immunology , DEAD Box Protein 58/metabolism , Enterovirus Infections/genetics , Enterovirus Infections/immunology , Inflammasomes/genetics , Inflammasomes/metabolism , Inflammation , Interferon Type I , Picornaviridae Infections/genetics , Picornaviridae Infections/immunology , Rhinovirus/metabolism , Rhinovirus/pathogenicity , SARS-CoV-2
2.
Viruses ; 13(10)2021 10 14.
Article in English | MEDLINE | ID: covidwho-1469382

ABSTRACT

Respiratory viruses are known to be the most frequent causative mediators of lung infections in humans, bearing significant impact on the host cell signaling machinery due to their host-dependency for efficient replication. Certain cellular functions are actively induced by respiratory viruses for their own benefit. This includes metabolic pathways such as glycolysis, fatty acid synthesis (FAS) and the tricarboxylic acid (TCA) cycle, among others, which are modified during viral infections. Here, we summarize the current knowledge of metabolic pathway modifications mediated by the acute respiratory viruses respiratory syncytial virus (RSV), rhinovirus (RV), influenza virus (IV), parainfluenza virus (PIV), coronavirus (CoV) and adenovirus (AdV), and highlight potential targets and compounds for therapeutic approaches.


Subject(s)
Citric Acid Cycle/physiology , Energy Metabolism/physiology , Fatty Acids/biosynthesis , Glycolysis/physiology , Respiratory Tract Infections/pathology , Respiratory Tract Infections/virology , Adenoviridae/metabolism , Coronavirus/metabolism , Humans , Orthomyxoviridae/metabolism , Parainfluenza Virus 1, Human/metabolism , Respiratory Syncytial Viruses/metabolism , Rhinovirus/metabolism
3.
Lancet Microbe ; 1(6): e254-e262, 2020 10.
Article in English | MEDLINE | ID: covidwho-1428634

ABSTRACT

BACKGROUND: During the 2009 pandemic of an emerging influenza A virus (IAV; H1N1pdm09), data from several European countries indicated that the spread of the virus might have been interrupted by the annual autumn rhinovirus epidemic. We aimed to investigate viral interference between rhinovirus and IAV with use of clinical data and an experimental model. METHODS: We did a clinical data analysis and experimental infection study to investigate the co-occurrence of rhinovirus and IAV in respiratory specimens from adults (≥21 years) tested with a multiplex PCR panel at Yale-New Haven Hospital (CT, USA) over three consecutive winter seasons (Nov 1 to March 1, 2016-17, 2017-18, and 2018-19). We compared observed versus expected co-detections using data extracted from the Epic Systems electronic medical record system. To assess how rhinovirus infection affects subsequent IAV infection, we inoculated differentiated primary human airway epithelial cultures with rhinovirus (HRV-01A; multiplicity of infection [MOI] 0·1) or did mock infection. On day 3 post-infection, we inoculated the same cultures with IAV (H1N1 green fluorescent protein [GFP] reporter virus or H1N1pdm09; MOI 0·1). We used reverse transcription quantitative PCR or microscopy to quantify host cell mRNAs for interferon-stimulated genes (ISGs) on day 3 after rhinovirus or mock infection and IAV RNA on days 4, 5, or 6 after rhinovirus or mock infection. We also did sequential infection studies in the presence of BX795 (6 µM), to inhibit the interferon response. We compared ISG expression and IAV RNA and expression of GFP by IAV reporter virus. FINDINGS: Between July 1, 2016, and June 30, 2019, examination of 8284 respiratory samples positive for either rhinovirus (n=3821) or IAV (n=4463) by any test method was used to establish Nov 1 to March 1 as the period of peak virus co-circulation. After filtering for samples within this time frame meeting the inclusion criteria (n=13 707), there were 989 (7·2%) rhinovirus and 922 (6·7%) IAV detections, with a significantly lower than expected odds of co-detection (odds ratio 0·16, 95% CI 0·09-0·28). Rhinovirus infection of cell cultures induced ISG expression and protected against IAV infection 3 days later, resulting in an approximate 50 000-fold decrease in IAV H1N1pdm09 viral RNA on day 5 post-rhinovirus inoculation. Blocking the interferon response restored IAV replication following rhinovirus infection. INTERPRETATION: These findings show that one respiratory virus can block infection with another through stimulation of antiviral defences in the airway mucosa, supporting the idea that interference from rhinovirus disrupted the 2009 IAV pandemic in Europe. These results indicate that viral interference can potentially affect the course of an epidemic, and this possibility should be considered when designing interventions for seasonal influenza epidemics and the ongoing COVID-19 pandemic. FUNDING: National Institutes of Health, National Institute of General Medical Sciences, and the Yale Department of Laboratory Medicine.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A virus , Data Analysis , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A virus/genetics , Interferons/metabolism , Pandemics , RNA, Viral/genetics , Rhinovirus/metabolism , United States
4.
Viruses ; 12(10)2020 10 09.
Article in English | MEDLINE | ID: covidwho-906169

ABSTRACT

Superimposition of protein structures is key in unravelling structural homology across proteins whose sequence similarity is lost. Structural comparison provides insights into protein function and evolution. Here, we review some of the original findings and thoughts that have led to the current established structure-based phylogeny of viruses: starting from the original observation that the major capsid proteins of plant and animal viruses possess similar folds, to the idea that each virus has an innate "self". This latter idea fueled the conceptualization of the PRD1-adenovirus lineage whose members possess a major capsid protein (innate "self") with a double jelly roll fold. Based on this approach, long-range viral evolutionary relationships can be detected allowing the virosphere to be classified in four structure-based lineages. However, this process is not without its challenges or limitations. As an example of these hurdles, we finally touch on the difficulty of establishing structural "self" traits for enveloped viruses showcasing the coronaviruses but also the power of structure-based analysis in the understanding of emerging viruses.


Subject(s)
Adenoviridae/metabolism , Capsid Proteins/metabolism , Coronavirus/metabolism , Protein Structure, Tertiary/physiology , Rhinovirus/metabolism , Adenoviridae/genetics , Coronavirus/genetics , Crystallography, X-Ray , Genome, Viral/genetics , Rhinovirus/genetics , Viral Structures/metabolism
5.
Nat Commun ; 11(1): 4252, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-741685

ABSTRACT

The 2019 novel respiratory virus (SARS-CoV-2) causes COVID-19 with rapid global socioeconomic disruptions and disease burden to healthcare. The COVID-19 and previous emerging virus outbreaks highlight the urgent need for broad-spectrum antivirals. Here, we show that a defensin-like peptide P9R exhibited potent antiviral activity against pH-dependent viruses that require endosomal acidification for virus infection, including the enveloped pandemic A(H1N1)pdm09 virus, avian influenza A(H7N9) virus, coronaviruses (SARS-CoV-2, MERS-CoV and SARS-CoV), and the non-enveloped rhinovirus. P9R can significantly protect mice from lethal challenge by A(H1N1)pdm09 virus and shows low possibility to cause drug-resistant virus. Mechanistic studies indicate that the antiviral activity of P9R depends on the direct binding to viruses and the inhibition of virus-host endosomal acidification, which provides a proof of concept that virus-binding alkaline peptides can broadly inhibit pH-dependent viruses. These results suggest that the dual-functional virus- and host-targeting P9R can be a promising candidate for combating pH-dependent respiratory viruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Influenza A virus/drug effects , Peptides/pharmacology , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Cell Line , Endosomes/chemistry , Endosomes/drug effects , Female , Humans , Hydrogen-Ion Concentration , Influenza A virus/metabolism , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/metabolism , Peptides/chemistry , Peptides/metabolism , Peptides/therapeutic use , Protein Binding , Protein Conformation , Rhinovirus/drug effects , Rhinovirus/metabolism , Viral Load/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL